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TECHNICAL MEMORANDUM

AN EXPERIMENTAL INVESTIGATION TO DETERMINE INTERACTION
BETWEEN ROTATING BODIES

(MSFC Center Director’s Discretionary Fund Final Report, Project No. 279–00–16)

1.  INTRODUCTION

Present physical theories, both phenomenological and quantum, while in a broad agreement
with experimental evidence, on a deeper level of logical analysis, encounter many inconsistencies or
problems. Although these problems have no immediate practical consequences, they stimulate the search
for new fundamental models of reality. Very active areas are now superstring theories, geometrodynamic
extensions of general relativity, such as Kaluza-Klein theories, topological geometrodynamics theories,
and twistor or torsion field theories. This new theoretical breeze brings new challenges to experimentalists.

As our quest for better understanding of the physics governing nature continues and more
experimental data became available, we begin to see some remarkable similarities between the macro-
cosm and microcosm. Perhaps the most important is the rotational motion of matter at any length scale.
Planets, stars, galaxies, and clusters of galaxies are all spinning objects, and at the microscopic level, all
the elementary particles (≈1,000) are spinning entities. Consequently, we witness that matter spins at all
scale levels. If one assumes a spinning distribution of electric charges than are in accord with the law of
induction, a magnetic dipole will result. Although such a classical model cannot be directly translated
into the microworld, the general cause for the phenomenon of the magnetic moment remains the same.

The magnetic moment of the particles is further related to its spin through the gyromagnetic
constant, and theoretical predictions for this parameter are in excellent agreement with experimental
data. However, there is mounting evidence on both the microlevel and macrolevel that our physical
model of spinning objects needs to be reassessed. Many of the theories mentioned above and models
of particles as nonsingular extended objects, usually based on classical electrodynamics, point to the
existence of some new types of interactions. Some of these theories, while maintaining the essence of
the classical physics as a subset, predict interaction between spinning macroscopic bodies. Also, reports
exist of experiments, conducted over the last hundred years, that point to such phenomena. It is difficult
to assess the credibility of these data since others have not repeated the experiments.

The new paradigm in physics revolves around the concept of vacuum and/or multidimensional
geometry. Our commonly accepted understanding of the vacuum is based on the Dirac sea of particles.
Here the energy spectrum of the particles has a gap and the lower energy band is almost fully occupied.
When a particle acquires sufficient energy, it is transferred from the lower to the upper energy band. A
free particle is created this way, and a hole is left in the lower band that represents an antiparticle. From
the quantum principle of uncertainty, there will always be some fluctuations in the system. This means
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that the vacuum actually constitutes a complex fluctuating field of various particles. Wheeler1 evokes
that this particle flux has an energy density on the order of 1094 g/cm3. The Casimir force, recently
measured,2 that acts between two electrically conducting bodies confirms the viability of a vacuum
as a real medium. In short, the physical properties of a vacuum depend on the presence and strength
of macroscopic electrical, magnetic, and gravitational fields.

Spin is the fundamental property of elementary particles. For example, neutrons, electrically
neutral particles, have a spin of   h/2, as do electrons. Many of the modern quantum and classical theories
also consider the physical vacuum as having spin or torsion properties. If so, then some macroscopic
manifestation similar to the Casimir force would be present. Modification of the local vacuum spin
properties by electromagnetic fields or by rotating bodies is then possible. However, no a priori
estimates of the effect can presently be made because the current vacuum models are inadequate.

Scientists in the 19th century liked to consider the free space between bodies as a medium with
fluid-like properties so spin can be transmitted. Beginning early this century many investigations have
been conducted with the intent of establishing an influence of solid body rotation on electrical, mag-
netic, and gravitational properties. Einstein, recognizing that rotational motion was not correctly treated
in his first general relativity theory, proposed, with Cartan, the first gravitational theory of spinning
bodies in 1923.1 Briefly, this general relativity theory, in its classical formulation, predicts a small
correction to the Newtonian gravitational force for spinning macroscopic masses. This correction is
rather difficult to detect under presently achievable rotational speeds. Several new proposed superstring
models dealing with reconciling gravity and quantum theory point to bigger effects. Also, twistor or
spinor theories, comprising natural extensions of the general relativity, assume the existence of
additional forces between the spinning bodies of unspecified magnitude that can only be determined
experimentally. Some experiments were reported decades ago with no definite claims, and only a few
measurements have been recently attempted. Also, we want to emphasize that there are several ways
rotational motion can be included into the general relativity theory, as attested to by many later models,
that address the necessary existence of gravitomagnetic fields.3–8

Although clearly overshadowed by theory, there have been some limited experimental works
conducted in this area. Myshkin9,10 conducted a series of experiments purported to discover a relation-
ship between macroscopic fields and rotation. Experiments utilizing gyroscopes that have not received
much exposure were later performed in the U.S.S.R. by Kozyrev.11 Other obscure Russian literature on
experiments and theories related to non-newtonian mechanics includes the following:

• Spartak Poliakov’s book with experiments on complex gyroscopic systems that exhibit
non-newtonian behavior.

• A theoretical book by Gerlovin, whose approach is based on Einstein’s general relativity
theory, that extends the dimensions of the world from four to seven. He obtains a spectrum
of the elementary particles, rest masses, and life times that agree with existing data reasonably
well (six digits or so). His approach is partially based on his discoveries that some classical
orbits of the point-like charges could be nonradiative; similarities with the string theories are
also evident. He also predicts some unknown gravity-related phenomena.
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• Veinik’s book addresses thermodynamics of real processes. He describes his experiments
on gyroscopes as well as on torsion pendulums, the effects of which are not easily explainable
by existing mainstream physics.

• Shipov’s book relates his ideas on torsion fields. Mathematically his book is sound; whether
his theoretical model is applicable to the real world remains to be seen, but his ideas attract
some of the best scientists in the field.

A detailed experimental study that suggests a possible force between spinning bodies has been
conducted by two physicists from Japan and reported in great detail in Phys. Rev. Lett.12 In short, a small
incremental decrease in weight was detected by a chemical balance as a function of increasing the
gyroscope’s rotation rate in a clockwise direction. Curiously, there was no effect observed when rotating
counterclockwise. Subsequent experiments conducted in the United States,13 utilizing a very precise
gyroscope, did not find any weight changes.

A French group14 did record a change, albeit 20 times smaller than that observed by the Japanese
group. Here it is relevant to state that the United States and French teams used different types of gyro-
scopes and did not accurately reproduce the Japanese experimental conditions. It has been conjectured
that the effects observed by the Japanese were due to vibrations of the gyroscope rotor that utilized
average quality ball bearings.15 In view of this premise, it is now interesting to compare the results with
those of the Russians11 who, independent of the Japanese, also used a chemical balance to measure
gyroscope weight as a function of rotation. Initially, to within six significant figures, they did not see
any weight changes. However, upon intentionally introducing small vibrations into the shaft, the weight
of the gyroscope was affected in the fourth digit and only in one rotational direction, as in the Japanese
study. The gyroscope was suspended on a rubber strip to suppress propagation of vibrations to the
balance; this provision did not affect the observed phenomenon. In support of the above observations,
Shipov16 theoretically shows that nonsymmetric rotation is necessary to generate a change.

The same Japanese team recently measured the free fall of gyroscopes in a vacuum tube. They
again observed a reduction of the acceleration for clockwise-rotating gyroscopes. There has also been
one report (apparently not refereed) of an experiment conducted in the United States17 of freely falling
gyroscopes in which the authors claim to observe changes in drop velocity due to the imposed rotation.

The above studies utilized measurements based on rotating objects. Consider now the series of
very well-planned experiments (that passed considerable critical review) elegantly conducted by Brush
in the early 1920s.18–20 After an introduction that evokes the essence of string theory, he considers
simple motion of pendulums and drop velocities of different metals (zinc, bismuth, and lead) fashioned
to have the same weight, dimensions, and centers of mass. Invariably the denser metal swung or dropped
faster, a direct contradiction to the established laws of physics. He concludes that there is something
intrinsic to materials themselves, making particular note of the peculiar behavior of bismuth.

Bismuth is not a typical metal. In contrast to most, it expands upon freezing. Bismuth is the most
diamagnetic of all metals and only mercury has a smaller thermal conductivity. It has high electrical
resistance and the greatest increase in electrical resistance when placed in a magnetic field; i.e., magne-
toresistance. Finally, bismuth has 209 nucleons, the largest of any stable element. These characteristics
bring to mind Wallace’s detailed patents.21–23 In short, Wallace, while at General Electric, invented
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a machine that spun a mass to promote nuclear spin alignment. This, in turn, generated a secondary
gravitational field that he called a kinnemassic field; i.e., a gravitomagnetic field. It was necessary, or
perhaps optimal, for the spinning mass to have an odd number of nucleons. Wallace employed a brass
wheel, although he notes bismuth to be preferable. To the best of our knowledge, outside of Wallace’s
results, there were no subsequent studies (at least published) confirming or denying his claims. This has
been a point of numerous speculations.

We note that many researchers, apparently independent of each other, have conducted
experiments that imply the existence of unusual forces due to rotation and/or electric/magnetic field
interactions. These efforts are still met with some skepticism by the scientific community. We have,
consequently, fashioned our initial experiments after them.
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2.  INITIAL EXPERIMENTS

Our preliminary experimental work is patterned after some earlier efforts, primarily those
conducted in Japan that reported a small incremental decrease in a gyroscope’s weight as a function
of increasing its rotation rate in a clockwise direction,12 and those of Wallace21–23 conducted in early
1970s that consisted of spinning a brass wheel.

In contrast to the Japanese experiment that utilized gyroscopes, our work consisted of placing a
small, high-speed electric motor directly onto the plate of a microbalance. The general setup can be seen
in figure 1. Our experiments took a number of progressions. Initially, to reduce vibrations, insulating
foam was wrapped around the motor. Shortly after initiating rotation (up to 30,000 rpm), a reduction
of weight was detected that, upon stopping, did not return. Initially surprising, we soon came to realize
the heat of the motor had vaporized some of the insulation with which it was in contact. Subsequently,
the insulation was removed and the motor suspended in a plastic laboratory bottle. When the motor was
spun in this configuration, a small decrease in weight (≈20 mg) was again detected. In contrast to our
first attempt, the weight returned after rotation ceased, and the result was reproducible. However, upon
sealing the motor in the bottle (fig. 1), initiation of rotation produced no decrease in weight. A simple
calculation showed that if heating from the motor slightly increased the local air temperature, the change
in density could account for the observed weight loss. The above experiment is not exactly like the
Japanese effort but is valuable in pointing out the care needed in taking and, in particular, assessing
measurements.

Figure 1.  High-speed motor assembly as it sits on the microbalance.
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A mechanical, air-driven device to promote rapid rotation (up to 20,000 rpm) of a metal disc
(in this case bismuth) was also constructed (fig. 2) and used to conduct experiments. The first experi-
ment consisted of spinning the disc in the presence of the Hall probe with the intent of detecting a change
in the adjacent magnetic field; none was detected. The second experiment focused on determining if
rotation of the disc would influence movement of another disc. Here, a second bismuth disc (fig. 2)
was suspended <1 mm above the rotating disc; a plastic film was placed between the two to elimi-
nate convection effects. A mirror was attached to the suspension wire on which a laser beam was shown
and reflected onto the adjacent wall. Thus, a very sensitive means of detecting any motion of the
suspended disc was ensured. The lower bismuth wheel was then accelerated to high rpm while the
reflected laser beam was observed. After numerous tries and variations, it was concluded that the lower
rotating wheel did not influence the upper suspended wheel. The results, or perhaps more accurately
nonresults, led to our third experimental investigation in which a spinning brass disc was utilized.

Figure 2.  Air-powered device designed to rotate a metallic disc, in this case
bismuth, at high speeds. Another bismuth disc is seen suspended
above the rotating disc.
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3.  THEORY OF THE NONAXISYMMETRIC FARADAY DISC

The Homeopolar machine, or so-called Faraday disc, is perhaps the simplest example of a
spinning body in presence of a magnetic field. It consists of a metallic disc with a static magnetic field
applied along the axis. When rotated, a voltage across the radius of the disc is generated. This was the
crucial experiment, performed more than 150 yr ago, in discovering the induction principle of electrody-
namics. Since then many attempts were made to refine our understanding of its underlying mechanisms,
and discussion of this matter is still continuing.

One of the unresolved questions is whether there is an additional degree of freedom for the
magnetic field. Consider, as an example, an axisymmetric magnetic field induced by a permanent
magnet. Now, let the magnet spin around its axis. This prompts the question of what happens to the
magnetic field. Do the magnetic field lines rotate as well, or is it just magnet motion that has no conse-
quence to the magnetic field? Several clever experiments have been proposed, but doubt still percolates
through the relevant literature. Consequently, there is growing interest in fundamental research on
possible unknown effects induced by spinning of macroscopic bodies. For example, we note the torsion
balance experiments by the Eöt-Wash Group at the University of Washington24 looking for new short-
range interactions, existing in accordance to some recent theoretical speculations. Gravity probe-B
experiments by NASA will accurately measure rapidly spinning spheres in space with the aim of
investigating gravitomagnetic effects predicted by Einstein’s general relativity.

Our initial interest, which led to this work, stemmed from the ideas of Wallace that were presented
in a series of the U.S. patents.21–23 Wallace, while at General Electric, investigated a rapidly spinning
brass wheel and conjectured the existence of a novel field. No further work was done to confirm or deny
his claims. Experimentally, a brass wheel 8.6 cm in diameter and 1.88 cm in thickness was rotated
up to 28,000 rpm and a faint signal measured by a Hall probe was detected at a distant point. In an
attempt to explain his results, he pointed to spin interactions. A convenient way to describe the direct
spin-spin interactions between the spin-polarized beams of particles and the target is by introducing the
concept of pseudomagnetism, an idea similar to the Weiss molecular. Our hypothesis is that pseudomagnetism
can explain Wallace’s observations.

In our setup, we avoided the use of any magnetic material and spun a 4-in-diameter, 1.4-in-thick
brass wheel by an air turbine. Furthermore, we shielded our system from interference with Earth’s
magnetic field (fig. 3).
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Figure 3.  High-speed brass wheel assembly used in this investigation.

To detect a possible but unknown field (gravitomagnetic), we used both the Hall probe and a
much more sensitive giant magnetoresistive sensor. Within our sensitivity limit (10–4 G) and a rotation
rate of 8,000 rpm, no signal was detected. However, with no magnetic shielding, a strong signal, its
magnitude increasing as the rotational speed increased from zero, was measured at the rim of the wheel.
Unexpectedly, the signal went through a peak value and began dropping down as the rotation rate
increased further, even passing through the zero value. For this effect to happen, the Earth’s magnetic
field would have to be orthogonal to the axis of the wheel. This configuration is nontypical for Faraday
disc studies, and no relevant literature was found.

In an effort to understand the phenomenon within the frame of magnetohydrodynamics, a theo-
retical model of a very long cylinder was developed that qualitatively reproduces the effect. In essence,
the explanation is as follows. Consider an arrangement of a wheel with its axis positioned horizontally
in a vertical magnetic field. When the wheel begins to spin, an electric current is induced in it that, in
turn, induces a magnetic field that is in a horizontal direction. Now, the total magnetic field will be
in a nonvertical direction. As the speed of the wheel increases, the induced magnetic field will become
nonhorizontal. Specifically, it will have an upward vertical component. Now the induced current will be
orthogonal to the sum of the external and induced magnetic field, triggering further rotation. This self-
consistent treatment will result in an upward drift of the direction of the maximum of the induced
magnetic field. To conclude, as the speed increases, the magnitude of the induced magnetic field
increases and the direction of the maximum shifts upward. The detector placed along the horizontal line
crossing the wheel axis will initially display a signal buildup due to an increase of the magnitude of the
induced magnetic field. Then, when the magnitude of the field increases, the maximum shifts from the
horizontal to the vertical position, resulting in a signal drop.
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Here we would like to comment on the Wallace experiments. The faint signals he observed
could result from a lack of magnetic shielding. Use of a steel base and support bars is a potential
source for measurements to be contaminated by parasitic magnetic fields. Although we did not reach his
28,000-rpm level, our disc is markedly bigger and the detection system is more sensitive. Moreover,
the sensor is based on alignment of the nuclear spins, and should be preferable to the measurements
of spin-spin interactions.

In this work, we developed a theoretical model of a nonaxisymmetric Faraday disc. First, we
formulate an analytical model of an infinitely long, rotating cylinder in the magnetic field orthogonal to
its axis. This model has its own merit as it clearly demonstrates the basics of the observed phenomena.
The second is a finite cylinder model. Essentially, it is a semianalytical model. However, it allows
for very good approximate analytic solutions. The presented solution could, for example, be used
as a benchmark for numerical magnetohydrodynamic modeling. We note here that the considered model,
due to its simple geometry, is a basic magnetohydrodynamic problem related to dynamo theory. Finally,
in the last section, we present our experimental data and compare it with the proposed theory.
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4.  LONG NONAXISYMMETRIC FARADAY DISC

In this section we develop a simple analytical model of an infinitely long, rotating metallic
cylinder in the presence of a uniform magnetic field orthogonal to the cylinder’s axis.

The basic equations of this magnetohydrodynamic model are well known and are given for
completeness in section 5. As a natural choice, we utilize a cylindrical coordinate system, with the wheel
axis corresponding to the z axis; we do not have the z component of the induced magnetic field. Further-
more, an angular dependence is harmonic with only one basic component. This allows one to introduce
a complex representation of the magnetic field that could be related to the experimental value through
this particular choice:

B B r iexp Re[ ( )exp ] .( ) = ϕ (1)

For the r component, the governing equation reads

∂
∂

+
∂
∂









 = +( )

2

2 0
3

r r r
B i B Br rµσω , (2)

where B0 is an external magnetic field, ω is the angular velocity, µ is the magnetic permeability,
and σ is the electrical conductivity.

The solution of this equation can be expressed through Bessel functions and is

B B CJ qr rr = + ( )– / ,0 1
(3)

where q i2 = − µσω , and the corresponding expression for the Βϕ component is

B iB iCJ qr r iCqJ qrϕ = ( ) + ( )– – / .0 1 0
(4)

In the free space around the cylinder, the induced field is given by

B C r B iC rr
space space= ′ = ′/ , – / .2 2

ϕ (5)

In this work, we do not consider magnetic materials, so the magnetic permeability is assumed
uniform throughout the region. This implies that the magnetic field is continuous across the boundaries
and we obtain for unknown coefficients C and C´:
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C
B

qJ qr
=

( )
2 0

0 0
,  ′ = + ( )

( )
C B r B

J qr

qr J qr
– .0 0

2
0

1 0

0 0 0
2 (6)

Then for the value of the r component of the induced magnetic field at the surface, we obtain

B r B
B J qr

qJ qr rr 0 0
0 1 0

0 0 0

2( ) = + ( )
( )

– . (7)

Utilizing equations (7) and (1) we can plot the induced r component of the normalized magnetic
field, at the surface as a function of the angular coordinate for a set of q values. The corresponding plot
is presented in figure 4.

Figure 4.  Angular dependence of the r component of the normalized
                magnetic field. The field is calculated at the surface of the
                disc for a set of 11 q values.

A plot of the r component of the magnetic field at various angular positions as a function of
angular velocity is depicted in figure 5. This graph can be directly compared with the experimental data.
The bottom curve corresponds to the direction of the external magnetic field, ϕ =0. Then the sequential
values for the angles are 0.5, 1, 1.5, 2, and π (in radians). The value of 1.5 corresponds to the horizontal
sensor position and was used in most of the experiments.
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The presented model should give practically correct values at the center of the cylinder rim of the
induced fields for the case of aspect ratio on the order of 10 or larger. Physically, for the high rotational
rates, the fields at the center of the rim should also be given correctly by this model as the skin depth for
the fields becomes small. Thus, the fields at the sidewalls will not overlap and will not penetrate to the
middle zone. In other words, sidewall effects will not be present at this position. Plots of the magnetic
field lines for different values of the skin depth parameter, q, are presented in figure 6. For small rota-
tional speeds, the magnetic field penetrates through the metallic cylinder. As the speed increases, the
lines are repelled from the center of the cylinder. Also, rotation of the lines is evident.

Figure 5.  Dependence of the r component of the normalized magnetic field
on the skin depth parameter, q, for several angular positions:
0, 0.5, 1, 1.5, 2, and p, in radians.

Figure 6.  The streamlines of the total magnetic field for a set of the q values:
1, 3, 5, and 10.  The external magnetic field goes from left to the right,
and the wheel rotates counterclockwise.  As the speed increases,
the magnetic field is repelled from the wheel.
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5.  FINITE CYLINDER MODEL

In this section, we develop a theoretical magnetohydrodynamic model of a nonaxisymmetric
Faraday disc of a finite length. We consider an electrically conducting solid cylinder with electrical
conductivity, σ; radius, r0; and height, 2L. The cylinder rotates around its axis with the rotational
velocity, ω. An external uniform magnetic field of strength, B0, is applied in a direction perpendicular
to the cylinder axis. The geometry of the model as well as the cylindrical coordinate system used here
is depicted in figure 7. We further assume that the external magnetic field is turned on sufficiently slow
and the mechanical rotational accelerations are small. For this stationary case, we have

∇ × =B Jµ , J E + v B= ×( )σ , ∇ × =E 0 , ∇ =J 0 ,  ∇ =B 0 , (8)

where B is the magnetic field, J is the electric current density, v is the velocity of the medium, and E
is the electric field.

Figure 7.  Schematic of the geometry and the cylindrical coordinates.
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z

r0
B(ext)

0



14

First, we eliminate the current from the equation for the magnetic field and obtain

∇ × = + ×B E v Bµσ ( ) . (9)

Further, in our case, the electric field can be expressed through the scalar potential, Φ, as

E = −∇Φ . (10)

The required velocity of the rigidly rotating cylinder is

v = ω ϕre . (11)

At this point we introduce, for greater convenience, complex fields according to the following rule
between the experimental B(exp) and complex B fields:

B Bexp Re[ ( )exp ] .( ) = r iϕ (12)

Then the externally applied uniform magnetic field, in its complex representation, is

B e eext( ) = +B iBr0 0 ϕ , (13)

and we have

v B e× =( )ext – .ω rB z0
(14)

Since the problem under consideration is linear, higher angular harmonics are not involved, and
thus the angular derivatives can be replaced by the imaginary unity number ∂

∂
=

ϕ
i .

Also note, we are solving for the induced magnetic field that evidently drops to zero at distances
sufficiently far from the spinning wheel. We scale distances by the radius of the cylinder and the electric
potential by ωr0

2.

After simple algebra, we obtain from equations (8)–(10) the following set of governing
equations:

∂
∂

+
∂
∂

+
∂
∂













+ =
2

2 2

2

2
21 1

0
r r r r z

B q Bz z– , (15a)
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where q i r2
0
2= – µσω ,

∂
∂

+
∂
∂

+
∂
∂













+ =
2

2 2

2

2
21 1

2
r r r r z

q Bz– Φ Φ (15b)

∂
∂

= ∂
∂

+B

z

B

r

q

r
r z

2
Φ , 

∂
∂

= + ∂
∂







B

z

i

r
B iq

r
rBz z

ϕ 2 Φ
– (15c)

1 2
0r r

rB
i

r
B iq

z
rB rBr r

∂
∂ ( ) = ∂

∂
+ +



ϕ – – .

Φ
(15d)

A general solution for equation (15a) is a superposition of the following functions:

B C z J krz = ( )1 1exp( ) ,ε  k i q= = +ε µσω ε2 2 2– , (16)

where C1 and ε are nonspecified at this moment.

This form, in turn, leads to the following solution for the potential, Φ, and the rest of the field
components:

Φ = ( ) − ′( )C J kr C
r

k
J kr2 1 1 1

ω
(17a)

B C
q

r
J kr C

k
J krr = ( ) + ′( )2

2

1 1 1εω
ε

(17b)

B C
i

k r
J kr C

iq k
J krϕ

ε
εω

= ( ) + ′( )1 2 1 2

2

1 . (17c)

Now, in order to obtain the required coefficients, we need to consider boundary conditions at the
surface of the wheel. As the surrounding cylinder medium (air) is an electric insulator, the normal to the
surface component of the electric current has to vanish. At the rim (r =1), we should then have

– ,
∂
∂

+ =Φ
r

rBz 0 (18)

which gives us the relationship between C1 and C2 as

C J k C k J k1 1 2
3

1ω ( ) = ′( ) (19)
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In principle, we have three sets of possible solutions:

(1)  C C
k J k

J k1 2

3
1

1
= ′( )

( )ω
.

(2)  C J k1 10 0= ′( ) =, .

(3)  C J k2 10 0= ( ) =, . (20)

Cases (2) and (3) yield Bz(r =1)=0.

At the sidewalls (z =±L), we have from the condition of Jz being zero there:

∂
∂

= − −
Φ
z

rB rBr0 . (21)

Finally, in order to write down the components of the magnetic fields as series expansions,
we note that as a function of z, Br, and Bf are even, and Φ and Bz are odd.

Below, we write down our general solution in terms of these three series expansions as outlined
above.

First consider case (1). As the z component of the magnetic field is an odd function of z, then
it is convenient to expand it into a Fourier sine series as

B D
I r

I
p zz n

n

n

n
n

1 1

1

( ) = ( )
( )∑ λ
λ

sin , (22a)

where λn np q2 2 2= – , p
L

n nn = 





=π
– , , , ...

1
2

1 2 3  Also note that cos( )p Ln = 0 and sin – .p Ln
n( ) = ( ) +1 1

The rest of the fields are

Bz
( )2 0= (22b)

B i D
p

r

I r

I

q I r

p I
p zn

n

n

n

n

n

n n nn
nϕ λ

λ
λ

λ
λ λ

1
2

1

1

2
1

2
1

( ) = −
( )
( ) +

′( )
′( )













∑ cos (22c)

B D
q I r

p I r

p I r

I
p zr n

n

n n n

n

n

n

nn
n

1
2

1
3

1

1

1

( ) = −
( )
′( ) +

′( )
( )













∑
λ

λ λ λ
λ
λ

cos (22d)



17

Φ 1 1
3

1

1

1

( ) = ( )
′( )

+
′( )

( )








 ( )∑D

I r

I

r I r

I
p zn

n

n n n

n

n
n

λ
λ λ λ

λ
λ

sin . (22e)

Consider now case (2), corresponding to the solution with no z component of the magnetic field.
This set also includes the z independent term. We have

Bz
2 0( ) = (23a)

B A
iq J r

J

z

L
Bn

n

n

n

n

n

n
ϕ ϕ

κ
ε

κ
κ

ε
ε

2
2

1

1
0

( ) =
′( )

( )
( )
( ) +∑

cosh

cosh
(23b)

B A
q

r

J r

J

z

L
Br n

n

n

n

n

n
r

2
2

1

1
0

( ) =
( )
( )

( )
( ) +∑ ε

κ
κ

ε
ε

cosh

cosh
(23c)

Φ 2 1

1

( ) = ( )
( )

( )
( )∑A

J r

J

z

Ln
n

n

n

n

κ
κ

ε
ε

sinh

cosh
  , (23d)

where we have

B B C J qr rr0 0 0 1= + ( )– / ,  B iB iC qJ qr0 0 0 1ϕ = + ′( )– . (24)

From the boundary condition equation (21) at z =L,

A
J r

J
C J qrn

n

n

n

n

n
∑ ( )

( )
+ ( ) =κ

ε
κ
κ

2
1

1
0 1 0 . (25)

This equation can be readily solved yielding coefficients

A
C qJ q J

q J
n

n n

n n n n

=
′( ) ( )

( )( ) ( )
–

– –
.

2

1

0 1 1
2 2 2

0

ε κ

κ κ κ κ
(26)

Note that B r L B z B2 2 01 1ϕ ϕ ϕ, ,( ) = ( ) = ( ) and B r L iBr2 0 1, .( ) = ( )ϕ
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Consider now a set corresponding to the case (3). Let

J n1 0β( ) = ,  γ βn n q= 2 2– . (27)

Then the associated solution of equation (15) is

B C
J r

J

z

Lz n
n

n

n

n

n

3 1

0

( ) = ( )
( )

( )
( )∑ β

β
γ
γ

sinh

cosh
(28a)

B C
i

r

J r

J

z

Ln
n

nn

n

n

n

n
ϕ

γ
β

β
β

γ
γ

3
2

1

0

( ) = ( )
( )

( )
( )∑ cosh

cosh
(28b)

B C
J r

J

z

Lr n
n

n

n

n

n

n

n

3 1

0

( ) =
′( )

( )
( )
( )∑ γ

β
β
β

γ
γ

cosh

cosh
(28c)

Φ 3 1

0

( ) =
′( )

( )
( )
( )∑–

sinh

cosh
.C

r J r

J

z

Ln
n

n

n

n

nβ
β
β

γ
γ

(28d)

At this point the boundary conditions for the electric current are fulfilled exactly, but the solution is still
not fully specified, as the coefficients Cn and Dn are arbitrary and not defined. The remaining condition
on the solution of our problem comes from the far-field condition of the vanishing solution at infinity.
This condition is nontrivial, as it requires formulating a solution in the free region outside the medium
and matching it at the boundaries. In order to avoid this, a surface integral formalism can be invoked
instead. Indeed, outside the medium, the magnetostatic equations can be used and thus the theory
of a scalar potential can be applied. We consider a potential, u, that satisfies the Laplace equation:

u u z ei( ) ( , ) ,r = ρ ϕ  ∇ =2 0u . (29)

Then, in free space, the magnetic field components can be represented as

∂
∂

=u

z
Bz , 

∂
∂

=u

r
Br , u i B= – .ρ ϕ (30)

From the Green theorem,

Ωu z
u z

n
u z

n
e dS

S

i( , )
,

– ,
–

,–ρ
ρ

ρ ϕ ϕ
0 0

0

1 0=
∂ ( )

∂
( ) ∂

∂




∫ ( )

r r
(31)

where Ω=4π if r0 belongs to the region surrounded by the surface, S, otherwise Ω is zero.
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Integration over the angular variable can be readily performed, leading to the cylindrical Green
function, which can be represented in this particular form:

G J k J k e dkk z z= ( ) ( )
∞

∫2 1
0

1 0
0π ρ ρ – – . (32)

For our geometry, we obtain from equation (31)

 Ωu z dz r u z u z G z z
L

L

rρ
ρ

ρ ρ
ρ

ρ ρ ρ0 0 0 0 0 0
( ) =

∂
∂

( ) ( ) ∂
∂









 ( )∫ =– –

–

   +
∂
∂

( ) ( ) ∂
∂







( )∫ =ρ ρ ρ ρ ρ ρd
z

u z u z
z

G z z

r

z L– –
0

0 0

0

   – – .ρ ρ ρ ρ ρ ρd
z

u z u z
z

G z z

r

z L
0

0 0

0

∫ ∂
∂

( ) ( ) ∂
∂







( ) = (33)

In terms of the magnetic field components, we have

– – ,
–

4 1 1 1 10 0 0 0 0 0 0π ρ ρ ρ
ρ

ρ ρϕ ϕi B z dz B z G z z iB z
G

z zr
L

L

( ) = ( ) ( ) + ( ) ∂
∂

=( )







∫

+ ( ) ( ) + ( )[ ]∫ρ ρ ρ ρ ρ ρ ρd B L G L z G L zz , – , – ,
0

1

0 0 0 0

                                              + ( ) ∂
∂

=( ) =( )[ ]∫i d B L
z

G z L z G z L zρ ρ ρ ρ ρ ρ ρϕ
2

0

1

0 0 0 0, – , – , – , , , (34)

where the parity properties of the fields were already taken into account. In the above expression,
the observation point r0 is outside the medium region. When it approaches the surface from outside,
the condition for the unknown coefficients Cn and Dn results. Below, the two surfaces of the cylinder
will be treated separately. We first consider the sidewall. In this case, z0=–L–ε, 0<r0<1, where ε is infini-
tesimally small. Using the Bessel function representation for the Green function, equation (32), we
can put equation (34) into the following convenient form:
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– ,i B L dkJ k kLρ ρ ρϕ0 0 1 0
0

( ) = ( ) ( )
∞

∫ Π (35)

where

Π kL dz B z J k iB z kJ k er
L

L
k z L( ) = ( ) ( ) + ( ) ′( )[ ]∫ +( )–

–

–1 11 1ϕ

– –e d J k B LkL
z

2
1

0

1

1+( ) ( ) ( )∫ ρ ρ ρ ρ

+ ( ) ( )∫ike d J k B LkL– .2 2
1

0

1

ρ ρ ρ ρϕ (36)

Now we multiply both sides of equation (35) by ρ β ρ ρ0 1 0
0

1

0J dm( )∫  and get

C iB dk
J k

k
kLm

m

m m m

γ
β β βϕ

2

1
13 2 0

1
2 2

0

+ ( ) =
( ) ( )

∞

∫
–

.Π (37)

The resulting expression involves a number of auxiliary matrices that can be evaluated numerically.
These can be presented as follows:

G dk
J k

k
Gmn

i

m
n
i( )

∞
( )= ( )∫ 1

2 2
0 –

,
β

(38)

where

G
kJ k

k
en

n

kL1 1
2 2

2( ) = ( )
–

,–

β
 G

J k

k
en

n

kL2 1
2 2

21( ) = ( ) +( )
–

,–

β
 G

kJ k

k
en

n

kL3 1
2 2

21( ) = ( ) ( )
–

– ,–

γ

G
J k

k
en

n

kL4 1
2 2

21( ) = ( ) +( )
–

,–

γ
 G

I J k I kJ k

k I
en

n n n

n n

kL5 0 1 1 0
2 2

1

21( ) =
( ) ( ) ( ) ( )

+( ) ( )
+( )λ λ λ

λ λ

–
,–



21

G
J k

k p
en

n

kL6 1
2 2

21( ) = ( )
+

+( )– ,  G
kJ k

k p
en

n

k L7 0
2 2

21( ) = ( )
+

+( )– , G
kJ k

k
en

n

k L9 1
2 2

21( ) = ( ) ( )
–

– ,–

ε

G
J k

k
en

n

kL10 1
2 2

21( ) = ( ) +( )
–

,–

ε
 and g

J k

k k
e dkm

m

kL1 1
2

2 2
0

2( )
∞

= ( )
( )∫

–
.–

β
(38a)

Now we define principal matrices:

M G G L G Gm n
n

n
m n

n

n
mn mn n n mn

n

n
mn, , tanh –= + +



 + ( )









( ) ( ) ( ) ( )γ

β
δ γ

β
γ β γ

β2 3
1 3 2

2
4 (39a)

N G
p q

G G s p Gm n
n

mn
n

n
mn mn n n mn, – – –= ( ) +

+ ( )











( ) ( ) ( ) ( )1 5
2 2

2
7 6 6

λ
(39b)

F
iB

B g iB gm
m

r m
m

m
m

=
( )

+ ( ) +








 + ( )









( ) ( )– –0

2 0
1

2 0
1

2

1
1

1

2
1

1

2

ϕ
ϕ

β β β

– – tanhA
q

G G Ln
n

mn mn n n

2
9 10

ε
ε ε∑ ( ) ( ) ( )[ ]   , (39c)

where

s
q I

p I

p I

In
n

n n n

n

n

n

n
=

( )
′( ) +

′( )
( )

2
1

3
1

1

1

λ
λ λ λ

λ
λ

. (40)

We end up now with the matrix equation

M C F N D[ ] = + [ ] . (41)

Now consider the case of r =1, –L < z < L . We have from equation (34)

– ,2 1 0 1 0
0

iB z dkJ k kzϕ ( ) = ( ) ( )
∞

∫ Π (42)
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where

Π kz dz B z J k iB z kJ k er
L

L
k z z

0 1 11 1 0( ) = ( ) ( ) + ( ) ′( )[ ]∫–
–

– –
ϕ

+ +( ) ( ) ( ) ( )[ ]− ∫e e e d J k i k B L B LkL kz kz
z

– –0 0
1

0

1

ρ ρ ρ ρ ρ ρϕ  . (43)

In order to assure for a fast Fourier cosine series convergence, we need to extract the constant
term from both sides:

– – – .2 1 10 1 0
0

i B z B L dkJ k kz kLϕ ϕ( ) ( )[ ] = ( ) ( ) ( )[ ]
∞

∫ Π Π (44)

Then the cosine series expansion gives

– cos – .
–

D
L

p

p q
dz p z dkJ k kz kLm

m

m

m L

L

m
2 2 2

2 1 0
0

+
= ( ) ( ) ( ) ( )[ ]∫ ∫

∞

λ
Π Π (45)

After considerable algebra, this expression can be put into a matrix form. For convenience, we introduce

a set of matrices, which can be numerically evaluated and are t dkJ k tm
i i( )

∞
( )= ( )∫ 1

0

, where

t
k J k

k pm

1 1
2 2

( ) = ( )
+

,  t
e J k

k k p

kL

m

2
2

1

2 2

1( ) =
( ) ( )

+( )
–

,

–

 t
k J k

k pm

3
2

1
2 2

( ) = ′( )
+

,

t
e J k

k k p

kL

m

4
2

1

2 2

1( ) =
+( ) ( )

+( )
–

,  t
e J k

k p

kL

m

5
2

1

2 2

1( ) =
( ) ′( )

+

–
,

–

 t
k e J k

k p

kL

m

6
2 2

2

2 2

1( ) =
+( ) ( )

+

–

,

t
k e J k

k p

kL

m

7
2

1

2 2

1( ) =
+( ) ′( )

+

–

, and t
e J k

k p

kL

m

8
2

1

2 2

1( ) =
( ) ( )

+( )
–

,

–

(46a)

and, similarly T dkJ k Tm n
i i
, ,( ) + ( )

∞
= ( )∫ 1

0

 where
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T
e J k

k p k p

kL

m n

1
2

1

2 2 2 2

1( ) =
+( ) ( )
+( ) +( )

–

, T
e kJ k

k p k p

kL

m n

2
2

1

2 2 2 2

1( ) =
+( ) ′( )
+( ) +( )

–

,

T
k e

k p

I J k I kJ k

k I

kL

m

n n n

n n

3
2 2

2 2
0 1 1 0

2 2
1

1( ) =
+( )
+( )

( ) ( ) ( ) ( )
+( ) ( )

–
–

,
λ λ λ

λ λ

T
e k J k

k p k

kL

m n

4
2 3

1

2 2 2 2

1( ) =
+( ) ( )
+( )( )

–

–
,

β
 T

e k J k

k p k

kL

m n

5
2 2

1

2 2 2 2

1( ) =
+( ) ( )

+( )( )
–

–
,

β

T
e k J k

k p k

kL

m n

6
2 2

1

2 2 2 2

1( ) =
+( ) ( )

+( )( )
–

–
,

γ
 T

e k J k

k p k

k L

m n

7
2 3

1

2 2 2 2

1( ) =
( ) ( )

+( )( )
–

–
,

–

γ

T
e J k k

k p k

kL

m n

8
2

1
2

2 2 2 2

1( ) =
+( ) ( )

+( )( )
–

–
,

ε
 and T

e k J k

k p k

kL

m n

9
2 3

1

2 2 2 2

1( ) =
( ) ( )

+( )( )
–

–
.

–

ε
(46b)

We now introduce the following matrices:

U L
t

p

p q
s tmn

m

m

m

m
m m mn=

+
+











( )2
1 3 2 2

2
1–

λ
δ

                                                                          – – –2 1 1 1
8

s p p T
t

pn m
m n

n mn
n

m
( )











+ + ( ) ( )

                                                                          + ( ) + 











+ + ( ) ( )
2 1 1

2 2

2
2

7
– – ,m n n

n
m mn

n

m

p q
p T

t

pλ
(47a)

V
p

p t

p
T T L T Tmn

m n

m n

m m

n m
mn mn n

n

n
mn n mn= ( )

+
+ + + ( )























( ) ( ) ( ) ( ) ( )– – – tanh – ,2 1
2 2 1

2 2
4 7

2
5 6γ

β γ
γ β

γ
γ (47b)
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                             E B p t
t

pm r
m

m m
m

m
= ( )( ) +











+ ( ) ( )
0

1 2
1

1 1 2
4

–

                                                     + ( )( ) +
( )













+ ( )
( )

( )iB p t
t

p
p tm

m m
m

m
m m0

1 5
3

61 1 2
4 1

2ϕ –
–

–

                                                   – – tanh – .A p
q

w

t

p
L T Tn m

m

n

m

n m
n n mn mn1

2 22 1

2 2
7 8( )

+
+ ( )













( )
( ) ( )∑ ε ε

ε ε (47c)

Then the second matrix equation is

U D + V C = E[ ] [ ] . (48)

Combining this equation with equation (41), we obtain

U + V M N D = E V M F[ ] [ ][ ] [ ]{ } [ ] [ ]– –– .
1 1 (49)

This matrix equation can be readily numerically inverted to yield the required values for vectors D and C.
The required value C0 can be obtained from the condition of zeroing the last Cn coefficient. This condi-
tion makes the solution nonsingular by selecting the proper value for the z -independent term.
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6.  NUMERICAL RESULTS

In this section, we present the results of our numerical calculations based on the previous section.
The aspect ratio is selected to be 1/2, which is close to our experimental value. The other relevant
nondimensional parameter is |q|, which is proportional to the square root of the rotational speed. The
dependence of the magnetic field on this parameter is needed for comparisons with the experiment. For
illustration purposes, we present below a set of six graphs for three components of the field within the
cylinder boundaries, each component having the real and the imaginary part (fig. 8). The graphs are
given for q i= – . The rank of the matrices entering equations (41) and (49) was selected to be 10. This
number is rather small, but gives sufficient accuracy for this electromagnetic problem (10–3). As expected,
the Bz component vanishes at the center of the cylinder. The Br value is largest at the middle of the rim,
considering that we look only at the surface points.

Figure 8.  A set of six functions of r and z variables that represent the magnetic field
in the spinning cylinder:  (a) Re(Br), (b) Im(Br), (c) Re(Bj), (d) Im(Bj),
(e) Re(Bz) and (f) Im(Bz). Re is the real part and Im is the imaginary part.
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Our numerical analysis shows a high degree of diagonality of the matrix M. This was observed
for practically all investigated L and q parameters. The nondiagonal elements are approximately five
orders of magnitude smaller than the corresponding diagonal element. This feature can be exploited to
obtain good analytical formulas, as the inversion of M can be accomplished analytically with high
accuracy. Similarly, the governing matrix in equation (49) is highly diagonal as well (at least three orders
of magnitude difference). Figures 9 and 10 represent the Br and Bϕ fields taken at the middle of the rim
at several different angular positions. As expected, the qualitative behavior is the same as in the case of
an infinitely long cylinder. The difference is in the position of the maximum for angles in vicinity of 90˚.
Specifically, the peak shifts toward the higher q values.

Figure 9.  Br /B0 as a function of the skin
depth parameter, q. Values are
taken at the middle of the rim.

Figure 10.  Bϕ  /B0 as a function of the skin
depth parameter, q. Values are taken
at the middle of the rim.
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7.  EXPERIMENTAL RESULTS

A brass (copper+zinc) wheel, with a 4-in diameter and 1.4 in thick, was used for this investiga-
tion. Ceramic ball bearings were used to safely spin the wheel up to 40,000 rpm. The wheel was also
electrically insulated from the rest of the armature. For spinning, an air turbine was used. The rotational
velocity was measured by two methods: (1) A simple strobe light and (2) a photodiode that detected
laser beam pulses as they passed through a slot in the rotating shaft. The magnetic sensor is based on a
giant magnetoresistivity, and consists of a balanced bridge circuitry. The position of the sensor was as
close as possible to the rim of the wheel. The linear dimension of the sensor is ≈8 mm so that the offset
from the surface is on the order of 15 percent. We did not use any goniometer system, so the accuracy of
the angular position is not high, being estimated within a few degrees, with the main uncertainty being
the direction of Earth’s magnetic field. We attempted to fit the experimental data with the presented
theory by selecting the best value for the electrical conductivity of the wheel. The results of this proce-
dure are displayed in figure 11, where the black dots represent experimental values. A slight misfit on
the right shoulder can be due to slight angular misalignment from a 90˚ position. The obtained value for
the resistivity is 43 nΩm, which compares well with those listed in table 1. We can conclude, based on
these measurements, that the proposed theory satisfactorily explains our experiments.

Figure 11.  Experimental values (black circles) and the corresponding theoretical fit
(hollow circles) assuming that the electrical conductivity is 43 nΩm.
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Table 1.  Measured electrical resistivities for several brasses.

Designation Composition

Electrical
Resistivity

(nΩm)

C21000 95 Cu – 5 Zn 31

C22000 90 Cu – 10 Zn 39.1

C22600 87.5 Cu – 12.5 Zn 43

C23000 85 Cu – 15 Zn 47

C24000 80 Cu – 20 Zn 54
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